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ABSTRACT

A new series expans%on method is developed for a class of nonlinear
singularly perturbed optimal regulator problems. The resulting feedback
control is near-optimal and can stabilize essentially nonlinear systems
when linearized models provide no stability information. The stability
domain is shown to include large initial conditions of the fast variables.
The control law is implemented in two-time-scales, with the feedback from the
fast state variables depending on slow state variables as parameters. The
coefficients of the formal expansions of the optimal value function are

obtained from equations involving only the slow variables.
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I. Introduction

Compared with the rich literature on linear regulator theory,
publications dealing with feedback design of nonlinear systems are a small
minority. Realistic approaches to the difficult nonlinear feedback control
problem usually exploit properties of special classes of systems to develop
approximate methods [1,2]. The approach in this paper exploits multiple
time scale properties of a class of nonlinear singularly perturbed systems [3,4] to
achieve stabilization and near-optimality. The stabilization results obtained are
essentially nonlinear in the sense that they also apply to the critical case
when linearized models provide no stability information. Due to a separation
of time scales, the proposed design procedure is applicable to higher order
systems.

The problem considered is to optimally control the nonlinear system

k=a () +A,@z+B&u, x0)=x (la)

bE = a,(x) + A ()2 +By()u ,  z(0) = 2z (1b)
with respect to the performance index

J =brw[p(x)+s'(x)z+z'Q(x)z+u'R(x)u]dt 2)

where W > 0 is the small singular perturbation parameter, x, z are n-,m-
dimensional states, respectively, u is an r-dimensional control and the
prime denotes a transpose. It is assumed that there exists a domain

D < Rn containing the origin such that for all xe€D and zeR™ the problem

satisfies the following assumptions:

U ——




I. The functions a;, a, Al, A2, Bl’ BZ’ P, s, q and R are differentiable
with respect to x a sufficient number of times and a;, a,, P and s are
all zero only at x=0.

1I. The matrices Q(x) and R(x) are positive definite, that is, Q(x)>0,

R(x)>0. Furthermore, the scalar function p+s'z+z'Qz of x and z is

positive definite in both x and z.
III. For every fixed x€D

m-1
99 A2B2,...,A2 BZ] =m (3)

rank[B
and hence A2(x) is assumed to be nonsingular. (If not, then using

u=u+ K(x)z such that A2 + B2K is nonsingular we redefine the problem.)

Assumptions I and II establish that the origin is the desired equili-
brium of (1). Assumption III and Q(x)>0 simplify the derivationms.
Alternatively a less restrictive stabilizability-detectability condition
can be used.

Finite time trajectory optimization problems for the same class
of systems have been treated in [3,4] via singularly perturbed two point
boundary value problems originating from necessary optimality conditions.
The resulting controls are open-loop and require boundary layer correction
terms at both ends of the interval. For the infinite time regulator
problem considered here the Hamilton-Jacobi-Bellman sufficiency condition
is more suitable since it readily incorporates stability requirements and
leads to feedback solutions. Using this condition we obtain near-optimal
stabilizing controls in feedback form and avoid explicit treatment of

boundary layer phenomena.
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Our procedure is based on a nested power series expansion of the
optimal value function in z and K. An advantage of this procedure is that
it uses lower order equations involving only the slow variable x. 1In appli-
cations truncated series are of interest. Stabilizing properties of various
truncated designs are discussed and an explicit estimate of the stability
domain is given. It is of practical importance that this domain encompasses
large initial disturbances of z(0). Furthermore, near-optimality of these
truncated designs is established in terms of O ), O(uz), etc. A particularly
useful result is that an O@(+) near-optimal feedback control can be implemented
without knowing the value of the small parameter i .

The paper is organized as follows. 1In Section II a reduced order
problem is formulated for the slow variable x. The crucial assumption is
that the properties of its solution are known. Using a truncated expansion
of the optimal value function the so called composite control is introduced
in Section III. Since the leading term in the series is the optimal value
function of the reduced problem, the original problem is well posed. In
Section IV it is shown that the composite control guarantees a finite domain
of stability for the resulting feedback system. In Section V, a formal
expansion of the optimal value function is proposed and near-optimality results

are discussed. An example is discussed in Section VI.

II. The Reduced Control

In singular perturbation techniques [5], a problem for the full

order system (1) where 4 > 0 is interpreted as a perturbation of a

reduced problem

He
]

al(x) + Al(x)z + Bl(x)u, x(0) = X, (4a)

o
I

= az(x) + Az(x)z + Bz(x)u (4b)
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in which w =0. Due to Assumption III, z can be solved from (4b) and eliminated

from (4a) and (2). Then the reduced problem is to optimally control the system

£ =a (x) + B (x)u, x(0) =x, (9)
with respect to
3, =) Ip (x) +2s)(x)u + u'R (x)uldt (6)
0
where
g =a =4 K s

GRS TE o
=1

L e

L e e )
po p s A2 a2 + aZA2 QA2 a2
BT DN T |
8s = Poty Qiya, = 58
4. =f
R, =R+ BéAé 1QA2 B (7

The origin x =0 is the desired equilibrium of the optimally controlled reduced

system (5) for all xeD, since, in view of Assumption II, a0(0)==0 and

po(x) +23$(x)U'+u'RO(X)U (8)

is positive definite in x and u.

The reduced problem (5), (6) is considerably simpler than the
original problem (1), (2) because of the elimination of the fast variables
and the reduction of the system order. One of the tasks of the singular
perturbation analysis is to establish whether the full problem is well
posed in the sense that its solution tends to the solution of the
reduced problem as » < 0. If so, then the next task is to deduce the

properties of the original problem from the properties of the reduced problem.
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Finally these properties are to serve as a basis for a simplified design
procedure.
To formulate our basic assumption about the properties of the
solution of the reduced problem we use the optimality principle
- : ! 1
0= min[po(x) +2s (x)u +u R (x)u + L (a (x) + Bo(x)u)] (9)
where L is the optimal value function and Lx is its partial derivative with

respect to x. This yields the minimizing control

R B
%o = R0 (So i 2 BoLx) (10)

whose elimination from (9 ) results in the Hamilton-Jacobi equation

1 1

s )Y+L(a -B s 5=
o D.4 o] (o o) o

= - atis" 1rt =
‘ (po B oS 4 "x oo BoLx’ 1(0) = 0.

(11)
Nota that,due to (8), By SéR;ISO is positive definite in D. Our

crucial assumption is then stated as follows.

IV. The unique positive definite solution L(x) of (11) exists in D and is
differentiable with respect to x a sufficient number of times.
Furthermore the level surface I.=co==constant is taken to be the
boundary of the set D.

In the special case considered in [1], where the linearization of (5) at x=0

is stabilizable and its states are observable in the quadratic approximation

of Jo’ our Assumption IV is automatically satisfied for all x near the origin.

It follows from Assumption IV that uy is the unique optimal feedback control
for the reduced problem and L is a Lyapunov function of the optimally

controlled reduced system

A
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£ o -1 B oy
x =a -BR (s *+7 BJL) =a (x) (12)
establishing that the origin is asymptotically stable and the set D belongs

to its domain of attraction.

III. The Composite Control

The optimal value function V(x,z,t) of the full problem (1),
(2) satisfies the equation

0 = min[p + s'z + z'Qz + u'Ru + vx(a1 +Az + Bju) +
u

1
7 Vz(a2 + AZZ + Bzu)] (13)

where Vx’ V2 denote the partial derivatives of V with respect to the

variables x, z, respectively. The minimizing control of (13) is

=_l'1||£|v
u > R (Blvx + 7 BZVZ) (14)

and its substitution into (13) yields the Hamilton-Jacobi equation

il
= 1 1 -
0 p+s'z+zQz+ Vx(a1 + Alz) + m Vz(a2 + AZZ)

-k 1 “Loaiyr 4 L
FOLBy + 5 V. BOR “(BV, + 3

5 ByV,) s V(0,0,8) =0 . (15)

Since system (1) is linear in z and J in (2) is quadratic in z,

and since z is multiplied by u, we seek a solution of (15) in the form

V(x,z,k) = Vb(x)-qui(x)z-fuz'Vé(x)z-+yq(x,z,u)

V(x,z,4) +hq(x,2,4) , V,(0) =0 (16)

where

3q/dx = 0(l), 3q/dz = O@). (17

a— S 2aa
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We shall investigate the expansion of q in a later section. The partial

derivatives of V with respect to x,z are

V =V, +0®)

% OT 2 (18)
V =WV, +2u2'V. +0@ ).

z 1 2

Substituting (18) into (15) and neglecting the v dependent terms, we obtain

the equation

— T It == =1 =
= - 7 - — ] ) 7
0 = p4Vg 2, +Va, -~ (V, B +V B,OR (B Vo +B \1)
r = — -l 1= o
4 Fear (o 7 5 L - ' 3
s'+2a,7, +Y; (4-BjR "B,V,) \ (Ay=BR™ ByV,) Tz
= e -1 = :
+ 2" (Q+V,A, H\; V, -, B R 15_;\'2)z. (19)
In order to satisiy (i%) ldentica'ly ior all 2z, we require that
= ol o LR R "Lt w4 i 7 = ]
0 = ptVyay tVya, -~ (\OXLI +v1152)R (u1~0>. .1,2\ D \’O(O) 0 (20)
0 =s'+2a'V,+V, (A -B.R B!V,) +7 (a,-B. R 1BV 21)
R T LR R e (e
= o =1 =
=Q+ +A,V, -V, b ; 2
0 Q V2A2 Az\z \2h2R B2V2 (22)
At each fixed value of x, (22) is an algebraic Riccati equation for Vz. In
view of (3) and C(x) >0, the unique positive definite solution V., exists such

2

that for all xeD, the recal parts of the eigenvalues of Ké==A7-BZR-1 2v2’

denoted by Re{k(gs)}, arc less than a negative constant. Thus Ké is non-

singular and V] can be expressed in terms of va and VZ as

—= - - = =1 = =

Vi = -{g" +2:1:'\\':,+\’O.‘,(A1-B]R B,V,) 4, . (23)
It is of crucial impriance that the elimination of Vl from (21) results in
an equation involving ounly VOX. For the well posedness of the full problem

e




it is necessary that the leading term VO of (16) be identical to the solution
L of the reduced problem.
Lemma 1

If Assumptions III and IV are satisfied, then the unique positive
definite solution Vb(x) of (20)-(22) exists in D and is identical to the
solution L(x) of the reduced problem (5),(6).
Proof: It is shown in the Appendix that eliminating Vl from (20), we obtain
the Hamilton-Jacobi equation (11) with va in place of Lx’ and hence
Vb(x) ¥ L(x) with properties as in Assumption IV.

By virtue of Lemma 1, Vb and v& are solved independently from (11)
and (22). This is the separation of time scales in the design of nonlinear
regulators, analogous to the linear time-invariant design in [7].

Using V, we derive the control

G4 = -=R (B1Vx

[
1
]

25 -1[B{V('JX+B£(71+ZVZZ)] +0@) (24)
= u_+0@)

whose main part u, is defined as the composite control. Eliminating Vl from

(24) wusing (23) and following the derivation in [7], u, can be written as
= 1 1 ']. - '1 l [t ]
u, (s o t5 Bo 0K) -R B 2[2 +A, (a,-BR “(s_+3 BOVOX))]
g -1 -1
= u-R B (z+A2 2) (25)
where
A,(x) = A -B.R 1BV, 26
2 2 72 22 (26a)
= a g - 3
az(x) =a,-3 2 (B V -+B2V1) 5 aZ(O)-—O. (26b)

a
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Hence the composite control u, consists of a slow control uy which optimizes
the reduced system (5) and a fast control -R-1B£Vé(z-+x_1§é) which optimizes
the fast part (z-%K-lié) of z in the sense that Vé satisfies (22). Note that
when z is not penalized in (2), that is when Q(x) =0, but Re{l(Az)}(’O, then

V? is identically zero and u, reduces to ug of (10). Stabilizing properties

of the composite control u, are established in the next section.

IV. Stabilizing Properties

System (1) controlled by u, is

X = al-l-Alz--l-Bluc = al(x)-+A1(x)z, x (0) =X s
pz = a2+A22 +B2uc = az(x) +A2 (x)z, z(0)=zo
where
T =4 -=DR BV €BV Y, =(0)=0
8 =8yt MR AR e T () o
am e ol 2
Al = A1 BlR BZVZ
With the change of variables
N =z+K & 29
| = z+4,"a, (29)
exhibiting T as the fast part of z, system (27) becomes
X = ao-+A1ﬂ , x(0) =X (30a)
T = u @& 5,5, +1K, +6 &, 5, &7
Wi =K@y ay) 8, +1A) $1(4) ay) A )T
- a1
= R 1 = 3
LEG) (A ) HRF )T, M(0) = 2z +A, (x )7, (x)- (30b)

Since the right-hand side of (30b) is an O@ ) perturbation of F&(x)ﬂ and
Re{l(ﬁé)}<10 in D we expect that T will rapidly decay to an O() quantity.

This motivates the introduction of




10

U(x,M,8) = Vb(x) +€"Vé(x)v (31)

as a tentative Lyapunov function for (30). Here € is a small positive scalar
to be determined. From Assumptions III and IV, Vo(x) is positive definite
and Vé(x):>0 in D. Hence U is positive definite for all xeD and p€Rm.

Furthermore, since Vb(x) =c03>0 for all x on the boundary of D, the surface
s(x,Nn,e) = {x,M:U(,N,8) =co] (32)

is closed in the (ntm)-dimensional domain xeD, ﬂeRm. We define Sin to be
the domain in the interior of S.

Let Dl be a set strictly in the interior of D, that is, the boundary

of Dl does not intersect the boundary of D, and let E be a bounded set in R".

The presence of € in U extends S to encompass (x,7) for all xeD1 and for

7 in
any prescribed set E. This crucial result is stated as follows.
Lemma 2

If Assumptions III and IV are satisfied, then there exists an € >0

such that the domain Sin contains all xeD TeE.

1’
Proof: At each point §eD1, the projection S onto the T subspace is the
ellipsoid

N'V, GIN = (c -V, (x))/€ (33)
implying that 7 extends to O(1//&). Hence for every x, there exists an € (%)
sufficiently small such that the ellipsoid (33) includes all TeE. (Note that
we must exclude the boundary of D because from (33) the projection of S at
any point on the boundary of D is a single pcint N =0.) Hence choosing €* to
be the smallest of such 6(%), the domain Sin contains all xeDl, TeE for any

€e (0,6%].

e s+ e — — R ——
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By virtue of Lemma 2, the initial condition T (0) of (30b), and

hence z(0) of (27), can be as far away from zero as O(ILﬂE) and still be

enclosed by S. We now examine the relationship between € and k.

Using (11),(22) and rearranging, we obtain the time derivative of

U with respect to (30) as

2 E ' 8 bl ~ -~
U= -g(x,€,8) -5 8 QGO)E - = 1M, M,8,0)7 (34)
where
o 1
8 =8 -z Y QY
= po-5'R R
81 7 Po™0" %0 " & Y0 o "o 0x
= N v
y = AV, +26V,f (35)
£ = m b i
g Fa
M=247pRr BT 4« (V,F+F'V )-u\;/
7" raeg sibd) 2 2 7°

Since V,F + F'VZ
in D, it follows

and for ue(O,uT?

and VZ are bounded for all x,T in S;y» and since Q(x)>0

that there exists a u?3>ﬂ such that M>0 for all x,T in Sin

. Thus the last two terms in U are positive definite. To

ensure that g(x,f,n) is positive definite, we assume that the reduced problem

also satisfies

V. The limit

.=l
lim L&Y = @) <o (36)
Ix!”O &1

exists for all fixed € >0.

il ;s y o ; s
Note that k>0 because y'Q 'y is positive semidefinite and g, is positive

definite. The limit (36) implies that there exists a domain D about x=0

such that

y'Qly £ (140)g, (37)

R —————— S——— e e ——— e o
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that is such that for k <2€/(l4k), g is positive definite in D, see (35).

Let Q(g):>o be the minimum value of gl on the boundary of D. Hence in the
domain

By (x) = {x: g x)<K] (38)
g is positive definite. On the other hand, since D is bounded, there exists

a kl(F)3>O such that y'Q-1y<fkl for all xeD, that is such that g is positive

definite when x is not in the domain
B(x) = {x : g  (x)<rk,/2€} (39)

about the origin. But for u<’2€§/k1, BCiﬁl, implying that g is positive
definite in D. Thus U is negative definite for all x,T contained in Sin'

We now conclude that U is a Lyapunov function for (30) guaranteeing that

x=0, "=0 is asymptotically stable for all xeD, , TeE and for we (0,u*], where
el s : 26 _26? *
ue = mln(1+k, kl ,ul). (40)

? i . : . o
Returning from the 7 variable to the z variable via z =T-A2 a

we obtain for all xeD TeE a corresponding bounded domain E, for z. We

L2 1
summarize the above discussions on the asymptotic stabilizing property of
u, in (24) as follows.
Theorem 1
1f Assumptions I-V are satisfied, then there exists a p* >0 such

that for all pe(0,u*) and for all xeD, and z in any prescribed bounded set

1
El’ the origin x=0, z=0 of the feedback system (1) controlled by the
composite control u, is asymptotically stable.

Theorem 1 can be applied in two different directions. As outlined

above, for any given D, and E ., we first find €* such that Sin of (32)

1

e ——y e R ———
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contains all xeDl, zeE,. Then we find p* from (40). This direction 1is

1

suitable when i 1is a parameter at the designer's disposal, such as a gain
factor [9]. 1In the other direction, if 4 represents some given physical
parameters, such as time constants, we use its value to determine the
smallest € such that U of (34) is negative definite, that is we find the

largest D1 and El'

As a special case of Assumption V, consider that the origin x=0
of the reduced system (12) is exponentially stable. Then near the origin,

po—ng;lso, Vb grow as !x‘z, and !va|’ lao' grow as lx', and we can find

positive constants kz,...,k9 and & such that

p -s'R Ls < k3'x|2

2
kZ,XI ok oh0 e

IN

2
kalxl Vb

IN

<k |x!2
2 1)
v

ks'x! 0x

IN

I i_k7lx'

\

I(SIX! = |Eo| ikg‘x'

for all |x| <6. It follows from (41) that there exists a fixed k;o€)>0

such that

' o
y'Q Ty < kyolx] (42)
and the limit (36) is bounded by
2
::19'1 k lx' k
lim < lim = i SR

Tk

(43)
lx!*O &1 lx!“O k2|x|2 2

satisfying Assumption V.

In this case a claim stronger than Theorem 1 can be made.
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Corollary 1

If Assumptions I-IV are satisfied and the origin x=0 of the
reduced system is exponentially stable, then the conclusion of Theorem 1 holds
and moreover the origin x=0, z=0 of (27) is exponentially stable.

Proof: The first part of the corollary follows from Theorem 1. The second

part follows from the linearization of (27) at the origin

8x G Al(O) 6x1
= : (A
1 BEé(O) - ! had

527 s J‘AQ(O) | 8z |

The system matrix of (44) has one group of n small eigenvalues O( ) close

851 e BEé
to those of 7;:-A1A2 o and another group of m large eigenvalues 0(1)
=0 33
1 — iy - —===l_ o o )
close to those of 7 AZ(O) [8]. But al-AlA2 a, =aj and = P
%a; _ aaz 2

= AA, j;:ix=0 as Eé(O) = 0. Thus the real parts of the eigenvalues of
the system matrix of (44) are all negative and x =0, z=0 is exponentially
stable.

If the origin x=0 of the reduced system is only asymptotically
stable but not exponentially stable, then in general g need not be positive
definite for all xeD. This situation includes the critical case when the
linearized model does not provide any stability information as clarified by
the example in Section VI. For this situation the system is now shown to
possess a weaker stability property, that is, its trajectories tend to a

small sphere around the origin. Define the domain in Rn
p(x) = {x:g(x,e.0) <0} (45)

which is contained in the domain D of (39). Due to the presence of Kk in
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(34), ﬁ may be positive only if xep(x) and M=0(p). Otherwise, ﬁ is

negative. Defining the surface
_"1 e
m(x,2) = {x,z :xep(xiH), 2= -A," (03, (x)] (46)

about the origin in Rm+n, u, defined by (24) is a stabilizing control in the
following sense.
Theorem 2

If Assumptions I-IV are satisfied, then there exists a W*>0 such

that for all we(0,u*], the feedback control (24) steers all xeD,, zeE, of the

12 1

full system O(W) close to the surface m(x,z).

Proof: Since U>0 and U<0 except for xep(x) and M=0(p), x converges to

p(x) and T decays to an O(W) quantity. Thus in the x,z variables, (x,z) converges
to an O() neighborhood of the surface T(x,z).

In the case where the fast transients of z in (1) are exponentially
stable, that is, AZ(X) is stable for all xeD, and we are only concerned with
the optimality of the reduced system (5), then the z-independent reduced
control ug of (10) stabilizes the full system (1) with essentially the same
stabilizing properties as u, of (24). We shall not repeat the argument.

An attractive feature of the controls u. and ug is that they do
not require the knowledge of the actual value of p provided that it is
sufficiently small. When appropriately implemented, these controls stabilize
the full system (1) and achieve optimality of the reduced system, and in the
case of u,» also optimality of the fast part of z. The above results also
answer the question of well posedness by giving the conditions under which

the same optimal reduced order system is obtained when M is set equal to

zero either when system (1) is uncontrolled or when it is controlled by

P T o

AN
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u_or u.. In contrast to many other singular perturbation results which
require b to be sufficiently small, this section provides a method to

compute an estimate of allowable values of L given a stability domain or

vice versa.

V. A Formal Expansion and Near-Optimality

The expansion (16) only satisfies the Hamilton-Jacobi equation (15)
to O(u) order. We now propose to solve (15) by expanding V formally as a
nested infinite power series. If this power series is convergent, then
the optimal solution V of (15) exists. For x,z near the origin, it has been
shown in [1] that the optimal solution exists and possesses a power series
expansion when system (1) after linearization at the origin is stabilizable
and the stafe in the quadratic approximation of J is observable. Here we
are interested in a power series of V which satisfies (15) to any order of u.
Since system (1) is linear in z and J is quadratic in z, the
optimal value function can be expanded as a power series in the components
of z [2]. 1In addition, since z is the fast variable, the z terms in the
optimal value function are multiplied by appropriate powers of u [5]. 1In

view of these two characteristics, we seek a solution of (15) in the form

m m m
V(x,z,pn) = Vo(x,u)+uj§1V1j (x,u)zj +uj§1 k‘;“1V2J.k(x,u)zjzk
2 m m m
o2 T

; o . v v
j=1 k=1 qu1'2ikq M IE T2

=t 5 % T Gt ) +
+ u ; e V., 2 g (e )2, 2, sveZ; AUEL R
§.=1 3=l 3= i dpeecdy J1d
Vo (0,) =0 “7)
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where V.. . . is the (j,j.,se--5J;) element of the completely symmetric
1]132...Ji 1552 }
generalized matrix Vi of dimension m and zj is the jth component of z.

The summation signs in (47) and in other equations in the paper will be

omitted when there is no confusion as to which indices jl’jz""’ji

are being summed. The partial derivatives VX,VZ ,...,Vz expressed in terms
1 m
of the vector x and the scalars Zysee-52, are
=Y o siote
Ve T Yox T MVix®y T Moy t (48a)
V. =uv ., +2uv, ..z, + 3u2v + i=1,2 48b
2, 1i 21j%j 3ijkzjzk sreiery i =] G2 ( )

where the summation signs over j,k are omitted.
For the series (47) to satisfy (15) as an identity, we first

rewrite (15) in terms of the vector x and the scalars ZyseeesZps

0= p-+siz, + Q

1

1
$51% T Ay aR T vzi(aZi +4,14%5)

- L l = 1yt l 1
& By g VziBZi)R v 5 BZini) @9)

where §;» 8,; are the ith components of the vectors s, a,, respectively,
A1i is the ith column of the matrix Al’ B2i is the ith row of B2, Q2ij’
AZij are the (i,j) elements of Q, A2, respectively, and the summation signs

over the indices i,j are omitted. Then, upon substituting (48) into (49)

and equating the coefficients of the like powers of z;, we obtain

-r
The (jysJps-+-,J;) elements of V
tions of the indices j;,jj,...,J [6].

i are identical for all permuta-

————————— e = st o) —

Beand.

e e e e
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e l =1 Tyt '
0= p+V.a, £tV i%9i "% (VOxBl-fvliBZi)R (BIV o AV TR

") k2t 0 T4 14
Vo (0,H) =0 (50a)
1
= + - =
0 =8y +Vo &y TV 8 ¥V 5805 720554854~ 5 (VB
=1 tygt ! el
+vlij)R (uBlvlix+232jv2ji) ’ =12 o m (50b)

0 =q,,+uV. . a

+
g THVa Ay SR A ) P A e TRV g8

_l =1 1! '
7 V(B +VBydR (B Vs 4 T3HByy Vaps )

1
~E (MVliXB +2V

=i 1yt 1
1 ZikBZk)R (uBlvljx H2B -V

2kV2k3)

£,5=1,2500.,m (50¢)

_ 2 2
O = B Vo stecfn FB (o sl by 8 Vg 0 g T W i Mo i)

l ‘l 2 [ 1 2 ]
3 (VB ¥V By IR O By Vg e TR s Vi fleg?

_.L =1 (Rval '
7 (W}, By +2V,; By R BV, e F38By V300

§ =12, ., (50d)'

where the right hand sides of (50a),(®0b), (50c),(50d),..., are the
coefficients of the z-independent terms and of the z.,, z.2.,, z.2.2 ,...,
i ij ijk
terms, respectively. Because of symmetry, there are m(m+1)/2 equations
i-1
in (50c), m(m+l) (m+2)/6 equations in (50d) and in general, (kfo(m+k))/il
equations when the coefficients of z, z, ...z. , jl’jz""’ji 1

e R
are equated.

The subscript s denotes the symmetrization operation of generalized

matrices (6]. For example,

1
V. A =1
V1182157 =2 Vaihoncs * Vo sidoni)

1
Vs B n) =V, . AL 9V, . +
3ijq°2qk’s 6 31jq 2qk” 3jiq"2qk" 3ika 295V Ik1% 291 V3 KqP2qi Ik qhoqi)

e ———— - - - e ——

Bend

RO S . P
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For a simplified treatment of these equations we now exploit the
presence of the small singular perturbation parameter w. We expand each

coefficient of (47) as a power series in W
5 giud
v, (x,6) = jgou Vi) s i=0,1,2,... (1)

where the boundary condition of Vg is Vg( 0:)=0, §=0,1,2,... The
expressions (51) substituted into equations (50) are to satisfy them as
identities in K. Equating the coefficients of the like powers in K, we
generate sets of equations for Vi » 1,j=0,1,2,... The first set of equations
obtained by equating the W-independent parts in (50a), (50b), (50c¢),

are precisely equations (20), (21), (22), respectively. Hence from the

uniqueness of solutions to (20), (21), (22). We conclude that

Vo ¥ ek, Y < V, =V (52)
and V thus consists of the leading terms of V.

The second set of equations in matrix form

0= V:')xil + vi'zz i v(l)(oy =0 (53a)
0= V%}xxl +av f;{ + vi'Kz + 2a"v; (53b)
0 v,fle —(v A +K' 0 ks V;A +A2' ; + 3(ng2) (53¢)
0 = 3(v ) + (v A ) (53d)
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obtained by equating the & terms in (50a), (50b), (50c), (50d), respectively,

1

1 0
involve only the unknown terms VOx’ Vl’ V2 and V3. In (53) the multi-

: . . 5 : A
plication of an nlanXn3 matrix by a nBXn4 matrix results in an nIXnZXnA

matrix. For convenience we suppress the last dimension of the mxmx1l
matrices (Vgxil) and (Vgié) and regard them as mXm matrices. Since KZ is
0 1
stable, (53d) and (53c) can be solved sequentially for V3 and V2, respectively.

Then V1

| can be solved from (53b) and its substitution into (53a) results in

the partial differential equation

' I ol
G=n a - (Eiv(l)x+252'V2)A2 a, , vcl)(O) = 0.

i : ;
In general, in equating the 4 terms we obtain the (i+l)st set

of equations involving the unknown terms Véx’ V;, V;, v;'l,...,vg+2. The
0 1 i-1 . ]
terms vi+l,vi,...,v2 are solved for sequentially and then VO is to be

solved from an equation similar to (41).
The main accomplishment of the nested expansions is that the first
set of equations (20)-(22) can be solved independently for the first three

V?, and VO

0
zeroth order terms V 2°

0’ Similarly, (53) and the subsequent sets

of equations can be solved independently for vé,vi,...,vg+2. These equations
are dependent only on x and not on z or k. A further simplifying property
is that at the first stage the equations (11),(22) for Vg and Vg are
decoupled.

The approximation obtained by expanding V of (47), (51) to the ith
set of equations is stated in the following theorem.
Theorem 3

Suppose that the solutions to the ith set of equations of V exist

and let V1 be the truncated series of (47), (51) including all the terms

e

a_a

e o

b e . o aB- ..

i
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VJi up to the ith set. Then the control

I s S R (R L
PR += 55
W R (BlV i BZVz ) (55)

is near optimal in the sense that Vi satisfies the Hamilton-Jacobi equation
(15) to an O(ui) error.
Proof: Substituting the Vi terms into (15) and using the first i set of
equations of V, the coefficients ofu.k terms, k< i, in the resulting
equation vanish, implying O(u?) near-optimality.

Thus Theorem 3 implies that u, of (24) is an O(p) near-optimal

control because it is an O(p) approximation of u, which achieves O0(uw) near-

1
optimality. 1In general, retaining only the uj terms, k<i, in ug, the
resulting‘control also is O(u?) near-optimal in the sense of Theorem 3.
Repeating the derivation in Section IV, we can show that uy
stabilizes the full system (1) with similar stabilizing properties as u, O
(24). We first introduce the x, T =Z'+X£152 variables and consider U in

(31) as a tentative Lyapunov function. The analysis is more cumbersome

but results similar to Theorems 1 and 2 and Corollary 1 can be established.

VI. Discussion and Example

The computational advantage of the proposed procedure is that all
the terms of V in (47), (51) are obtained from equations involving the slow
variable x only. Moreover Vg and Vg are solved for independently. Explicit
consideration of the initial boundary layer is avoided and it is optimally
stabilized by the z variable feedback. Furthermore using the x,T variables

an estimate of the domain of stability is easily obtained. Alternatively,

P e m———
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for a stability domain to encompass a prescribed bounded set TeE < Rm
a bound for ¢ can be determined.

Several aspects of the design procedure and the stability properties
of the resulting feedback system are now illustrated by considering the

optimal control problem of the second order system

X = Xz
(56)
wz = =z +u
with respect to the performance index
WG 0 S
3= o4y e+ 5 ud)ar. (57)
0
g . IR ORED e
Solving the reduced problem we obtain L—Vo—x and u = -x

The optimally controlled reduced system (12) is >'<=-x3 and its unique
asymptotically stable equilibrium is x =0. Note that the linearization
of the reduced system fails to provide any stability information at x=0.
Let D be the interval [-1,17, that is, L=co=1 at x =+l by Assumption IV.

The pair (A2,B2)= (-1,1) satisfies (3) and we can solve (22) for

il =
Vg=§' (A/E—l) such that A2 =-4/2. Then the substitution of V8=L=x2 and
V(z) into (23) yields the following expressions for (24) and (16)
u, = W2+ (/2-1)2) (58)
= 2
V = x° +u/2x’z +4 21 WE-132". (59)

The resulting feedback system is

X = xz

2% -2z,

(60)

Mz

B - - e —— o o e gy




——
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This result is essentially nonlinear since the linearization of
(60) at x=0, z=0 does not provide any stability information. Using the

change of variables T‘,=z+x2, system (60) becomes

x = -x2 +xT
(61)
2
ul = 2ux’ - W2-2x2).
Since we require le <1, W is restricted to be less than 1//2. The
tentative Lyapunov function (31) is
Ua,TLE) = X +y W2-1)en’. (62)

If we require that the initial conditions of (61) be in le <.8, !Tl =55

then we must set £ to be less than .0695 in order for the ellipse
2! 2
Sx,M,8) = {x,M:U=x +7 «2-1)En° =1} (63)

to enclose these initial conditions. Plots of S in the x,T coordinates
and the x,z coordinates for € = .06 are shown in Figure 1. The time

derivative of U with respect to (61) is

: AR S
0= -G -Fy*) - -2m (64)
where
g, R e N (65)
(65)
g=n-2y, M=41-«/§-2p.(~2-1)x2.

Since liz)n yz/g1=2, Assumption V is satisfied. For all x,T in the interior
X

of S and €= .06, U is negative definite for all we(0,.03]. Hence x=0, z=0

is asymptotically stable for all |x| < 8y |z+x2! <5 and pe(0,.037,

Furthermore, V satisfies the Hamilton-Jacobi equation (15) with an error

of H-Zﬁxzzz.




z

x,T coordinates

X,z coordinates

-10

Figure 1. Plot of S in (63).

1
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If we are only interested in the optimality of the reduced problem

and consider the z-part as due to ''system parasitics,' we can apply the

reduced control ug to (56) as A2=-1 is stable. System (56) controlled by
u_ 1is
o
X = Xz
5 (66)
Mz = =x =2z

Transforming z to ﬂ=z+x2, system (66) becomes

. 3
x = -x_ +x7

(67)
B = -Bx® - (1 - Rux 0.

We use U in (62) as a Lyapunov function for (67) and the time derivative of

U with respect to (67) is

3 /o _
U= -[2 'eﬂ S@T-110 00 e ) % -%”22 L ‘e& 2 W41 - €x2)x%]

% 2-1) - "IN, (68)

Thus for all x,T enclosed in S and €= .06, U is negative definite for all
pe(0,.02]. Hence x=0, z=0 of (66) is asymptotically stable for all
[x| < .8, |z4x?] <5, we(o,.02].

To obtain an O(p.z) approximation of V in the sense of Theorem 3,

we solve (53) for higher order terms of V‘]1 and obtain

- 2

u, u, -W2x%z (69)
4

v o= T S—apete?, (70)
2

System (56) controlled by u, becomes

- g —— ————— e~
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X = Xz

~in B i, (71)

Wz
. o 2 :
or, in the x,l=z+x variables,

3 3
x = -x +x

ul =-427

(72)

2
which is globally asymptotically stable for all & > 0. Furthermore, V

satisfies (15) with an error of p2(8x422-+2x223).

VII. Conclusions

A nested power series expansion method has been proposed for
solving the optimal control problem of a class of nonlinear singularly
perturbed systems. The terms in the expansion V are obtained from equations
involving only the slow variable x. 1In addition, Vg and Vg are solved for
independently. Explicit consideration of the initial boundary layer is
avoided and it is optimized by the z variable feedback. Sufficient condi-
tions are obtained such that feedback controls using truncated series
stabilize the nonlinear systems and the stability domain can encompass large
initial conditions of z. These truncated controls can achieve near-
optimality of O(w), 0012), etc. In particular, an O(y) near-optimal feed-

back control can be implemented without knowing the value of the small

parameter u. The results apply to essentially nonlinear problems.
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Appendix

Substituting (23) into (20) and rearranging yields

= 1)
0= X; +V5,%; - 4 Vox*3Vox
where

X = -(s'+2a'V)K_l -(LS +aV) BRlB ( s+Va)
e gloldy Ry =% K2 22 2
% =8 4BR BT (s+Va)
2 9 e ol 2

PO
X, ~BR B
a =a 3 =y BRlBV)Aa
o 1 22
B =3 - @y BR B )A.ZB
K = £

2 = Ay ~B,R BV,

0 -1
and the superscript O in Vox and VO has been dropped. Let H = I+R 1B V.A, B

2 igie bg»
Then H © = T-R ‘8'V.A.'B, and ' RE"L = p+5'a' toals, =n Th
gVghe By & s R B L
R - - —-1 - = -1'
Bo — B1H AlA2 B2 BOH. Hence X3 BOR0 Bo' Also,
X =a+BR'1[(R+B'A"1A B)R Loy ataprar” V]a+ BR-IBA' L
T RS 2hy Q 2Vohy 1By 27 2 278
= a, +BR1BA 1( +AlBR1BV +V.A,-V,B R BV
2By AV, +Q 2V2 T VoA,7V, B, )Az
1 -1 o}
+3 B,R BjA s

a -B R’ls
o oo

o'

-1 -1 -1 _ -1 -1 e N W | -1
Furthermore, A2 BZR BZA2 = A2 BZHR H' BZAZ A2 B2R B2A2 and
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e S
A, A2 +A, BZR B,V,A,

[}

o -1
A, +4, B2R B (v, +A2 QAZBR BV)A2

L =i L -1 -1 =1
= A2 A2 B2R B2A2 QA2 A2 B2R B2A2 V2.

Thus Xl becomes

ST TEE N R R N R T e |
X, = p-s'A,"a, 8 'A, "B.R "BJA) QA,T - s'A,B,R TBJA s

ll =] —1 —-1
+a2V2A2 B2R BZAZ Vza2 a2(V2A2 -+A2 Vz)az.

But
el =l ~F 5= sl -lo1,-1
VA, ARV, = LA -k N, AV A, BR B QA +A2 QA BR B2A2 v,
=1 =] =1
+2V,A, B,R "BjA) 'V,
=A"1QA'1- v*he m g Tptuat +(V, +A; Q)A BRlBA (V, +Q L
g Wy "As HER BsVets 7 Boky A,
FVATER Earty - A BR BA QA
gty By Soity Yy o ) 2’
and
1 1 1 ' 1 S 1 ]. 1
A, "V,B,R B2V2A2 [- (v +A QZ)A +A2 VBR BVA ]BR B2V2A2
that is,
A'IVBRIB'VA1=-(V+A )A BRlB'VAl
2 VPR BaVolhy 2 QO g% bt
" = P, S
v, +A Q)A BR BA, (A, +V,),

implying X1 =Py -sékglso. Hence elimination of v from (20) yields the

Hamilton-Jacobi equation (11) of the reduced problem.
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